A Single Packet of Transmitter Does Not Saturate Postsynaptic Glutamate Receptors

نویسندگان

  • Taro Ishikawa
  • Yoshinori Sahara
  • Tomoyuki Takahashi
چکیده

Neurotransmitter is stored in synaptic vesicles and released by exocytosis into the synaptic cleft. One of the fundamental questions in central synaptic transmission is whether a quantal packet of transmitter saturates postsynaptic receptors. To address this question, we loaded the excitatory transmitter L-glutamate via whole-cell recording pipettes into the giant nerve terminal, the calyx of Held, in rat brainstem slices. This caused marked potentiations of both quantal and action potential-evoked EPSCs mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors. These results directly demonstrate that neither AMPA nor NMDA receptors are saturated by a single packet of transmitter, and indicate that vesicular transmitter content is an important determinant of synaptic efficacy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse.

Whether a quantal packet of transmitter saturates postsynaptic receptors is a fundamental question in central synaptic transmission. However, this question remains open with regard to saturation at mature synapses. The calyx of Held, a giant glutamatergic synapse in the auditory brainstem, becomes functionally mature during the fourth postnatal week in rats. During postnatal development, the me...

متن کامل

Variability of Neurotransmitter Concentration and Nonsaturation of Postsynaptic AMPA Receptors at Synapses in Hippocampal Cultures and Slices

To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) w...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release

Postsynaptic sensitivity to glutamate was genetically manipulated at the Drosophila neuromuscular junction (NMJ) to test whether postsynaptic activity can regulate presynaptic function during development. We cloned the gene encoding a second muscle-specific glutamate receptor, DGluRIIB, which is closely related to the previously identified DGluRIIA and located adjacent to it in the genome. Muta...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002